

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year

Subject: - Web Development Using PHP & MySQL

Unit Contents

UNIT – I BASICS OF PHP: Introduction to PHP, PHP features, installation of
XAMPP/WAMP, Benefits of using PHP MYSQL, Server Client Environment,
Web Browser, Web Server Installation & Configuration Files.
OOPS with PHP, language basics, syntax, comments, variables, constants and
data types, expressions and operators, flow control statements, looping
structures, Arrays
Including html code in PHP, Embedding PHP in web pages.

UNIT – II FUNCTIONS & STRINGS in PHP: Defining a function, Calling a function,
variable scope, function parameters, return values, User Defined Function,
System Defined Function, Parameterized Function, Date & Time Function,
Hash Function, Mail Function, predefined functions.
Strings: Creating & accessing string, searching and replacing strings,
encoding and escaping, comparing strings, formatting strings, regular
expression.

UNIT – III Data & File Handling: PHP Forms: $_GET, $_POST, $_REQUEST, S_FILES,
$_SERVER, SGLOBALS, $ ENV, input/output controls, validation, Cookies and
Sessions.
File Handling: File and directory, open, close, read, write, append, delete,
uploading and downloading files. File exists, File Size, Rename. Reading and
display all/selected files present in a directory.

UNIT – IV MySQL an Overview: Introduction, What is a Database, Understanding an
RDBMS, Tables, Record & Fields, SQL Language.
Working with phpmyadmin: Creating and using a database, Selecting a
database, creating/dropping a table, loading data into a table, Retrieving
information from a table, selecting all data, selecting particular rows,
selecting particular columns, writing queries, sorting, date, calculations,
working with NULL values, pattern matching, counting rows, using more
than one tables, using table and column aliases.

UNIT – V MySQL DATABASES IN PHP: Introduction, connecting to a MySQL
database, querying the database, Retrieving and displaying the results,
modifying data and deleting data through front end. Designing applications
using PHP & MySQL.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

UNIT -1

Introduction to PHP & Features

PHP is a server scripting language, and a powerful tool for making dynamic and interactive Web
pages.

PHP is a widely-used, free, and efficient alternative to competitors such as Microsoft's ASP.

What is PHP?

• PHP is an acronym for "PHP: Hypertext Preprocessor"

• PHP is a widely-used, open source scripting language

• PHP scripts are executed on the server

• PHP is free to download and use

What is a PHP File?
• PHP files can contain text, HTML, CSS, JavaScript, and PHP code

• PHP code are executed on the server, and the result is returned to the browser as
plain HTML

• PHP files have extension ".php"

What Can PHP Do?
• PHP can generate dynamic page content

• PHP can create, open, read, write, delete, and close files on the server

• PHP can collect form data

• PHP can send and receive cookies

• PHP can add, delete, modify data in your database

• PHP can be used to control user-access

• PHP can encrypt data

With PHP you are not limited to output HTML. You can output images, PDF files, and
even Flash movies. You can also output any text, such as XHTML and XML.

Why PHP?
• PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)

• PHP is compatible with almost all servers used today (Apache, IIS, etc.)

• PHP supports a wide range of databases

• PHP is free. Download it from the official PHP resource: www.php.net

• PHP is easy to learn and runs efficiently on the server side

To start using PHP, you can:
• Find a web host with PHP and MySQL support

• Install a web server on your own PC, and then install PHP and MySQL

Use a Web Host with PHP Support
• If your server has activated support for PHP you do not need to do anything.
• Just create some .php files, place them in your web directory, and the server will

http://www.php.net/

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

automatically parse them for you.
• You do not need to compile anything or install any extra tools.
• Because PHP is free, most web hosts offer PHP support.
• Set Up PHP on Your Own PC

However, if your server does not support PHP, you must:
• install a web server

• install PHP

• install a database, such as MySQL

PHP Scripts Syntax
• A PHP script can be placed anywhere in the document.
• A PHP script starts with <?php and ends with ?>:
• PHP statements end with a semicolon (;)

Example

<html>
<body>
<h1>My first PHP page</h1>
<?php
echo "Hello World!";
?>
</body>

</html>

Comments in PHP
A comment in PHP code is a line that is not read/executed as part of the program. Its
only purpose is to be read by someone who is looking at the code.

Comments can be used to:
• Let others understand what you are doing

• Remind yourself of what you did - Most programmers have experienced coming back
to their own work a year or two later and having to re-figure out what they did.
Comments can remind you of what you were thinking when you wrote the code

Example
<html>
<body>
<?php
// This is a single-line comment
This is also a single-line
comment /*
This is a multiple-lines comment
block that spans over multiple

<?php

// PHP code goes
here ?>

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

lines
*/
// You can also use comments to leave out parts of a code line
$x = 5 /* + 15 */ + 5;
echo
$x; ?>
</body>
</html>

Variables

• Variables are "containers" for storing information.
• Creating (Declaring) PHP Variables
• In PHP, a variable starts with the $ sign, followed by the name of the variable:

Rules for PHP variables:

A variable can have a short name (like x and y) or a more descriptive name (age,
carname, total_volume).

• A variable starts with the $ sign, followed by the name of the variable

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A- z,
0-9, and _)

• Variable names are case-sensitive ($age and $AGE are two different variables)

Output Variables
• The PHP echo statement is often used to output data to the screen.

PHP Variables Scope
• In PHP, variables can be declared anywhere in the script.
• The scope of a variable is the part of the script where the variable can be

referenced/used.
PHP has three different variable scopes:

• local
• global
• static

Global and Local Scope
A variable declared outside a function has a GLOBAL SCOPE and can only be accessed
outside a function:
A variable declared within a function has a LOCAL SCOPE and can only be accessed within
that function:

The global Keyword
• The global keyword is used to access a global variable from within a function.

• To do this, use the global keyword before the variables (inside the function):
The static Keyword

Normally, when a function is completed/executed, all of its variables are deleted. However,

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

sometimes we want a local variable NOT to be deleted. We need it for a further job.
echo and print Statements

• In PHP there are two basic ways to get output: echo and print.
• In this tutorial we use echo (and print) in almost every example. So, this chapter

contains a little more info about those two output statements.
• echo and print are more or less the same. They are both used to output data to the

screen.
• The differences are small: echo has no return value while print has a return value

of 1 so it can be used in expressions. echo can take multiple parameters (although
such usage is rare) while print can take one argument. echo is marginally faster than
print.

Echo Statement
The echo statement can be used with or without parentheses: echo or echo().

Data Types
• Variables can store data of different types, and different data types can do

different things.
PHP supports the following data types:

• String

• Integer

• Float (floating point numbers - also called double)

• Boolean

• Array

• Object

• NULL

• Resource

PHP String

• A string is a sequence of characters, like "Hello world!".
• A string can be any text inside quotes. You can use single or double quotes:

PHP Integer
An integer data type is a non-decimal number between -2,147,483,648 and
2,147,483,647.

Rules for integers:
• An integer must have at least one digit
• An integer must not have a decimal point
• An integer can be either positive or negative
• Integers can be specified in three formats: decimal (10-based), hexadecimal (16-

based - prefixed with 0x) or octal (8-based - prefixed with 0)
• In the following example $x is an integer. The PHP var_dump() function

returns the data type and value:

PHP Float
• A float (floating point number) is a number with a decimal point or a number in

exponential form.
• In the following example $x is a float. The PHP var_dump() function returns the

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

data type and value:
PHP Boolean

A Boolean represents two possible states: TRUE or FALSE.
$x = true;
$y = false;
Booleans are often used in conditional testing. You will learn more about conditional
testing in a later chapter of this tutorial.

PHP Array
• An array stores multiple values in one single variable:
• An array is a special variable, which can hold more than one value at a time.
• An array can hold many values under a single name, and you can access the

values by referring to an index number.
Create an Array in PHP

• In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

• Indexed arrays - Arrays with a numeric index

• Associative arrays - Arrays with named keys

• Multidimensional arrays - Arrays containing one or more arrays

PHP Operators
Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:
• Arithmetic operators

• Assignment operators

• Comparison operators

• Increment/Decrement operators

• Logical operators

• String operators

• Array operators

PHP Arithmetic Operators
• The PHP arithmetic operators are used with numeric values to perform common

arithmetical operations, such as addition, subtraction, multiplication etc.

Operator

Name

Example

Result

+

Addition

$x + $y

Sum of $x and $y

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

-

Subtraction

$x - $y

Difference of $x and $y

*

Multiplication

$x * $y

Product of $x and $y

/

Division

$x / $y

Quotient of $x and $y

%

Modulus

$x % $y

Remainder of $x divided by $y

**

Exponentiation

$x ** $y

Result of raising $x to the $y'th power

 (Introduced in PHP 5.6)

PHP Assignment Operators
• The PHP assignment operators are used with numeric values to write a value to

a variable.
• The basic assignment operator in PHP is "=". It means that the left operand

gets set to the value of the assignment expression on the right.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

x = y

x += y

x -= y

x *= y

x /= y

x %= y

x = y

The left operand gets set to the value of the expression

 on the right

x = x + y

Addition

x = x - y

Subtraction

x = x * y

Multiplication

x = x / y

Division

x = x % y

Modulus

PHP Comparison Operators
• The PHP comparison operators are used to compare two values (number or

string):

Assignment Same as... Description

Operator Name Example Result

== Equal $x == $y Returns true if $x is equal to $y

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

===

Identical

$x === $y

Returns true if $x is equal to $y, and they are of

 the same type

!=

Not equal

$x != $y

Returns true if $x is not equal to $y

<>

Not equal

$x <> $y

Returns true if $x is not equal to $y

!==

Not identical

$x !== $y

Returns true if $x is not equal to $y, or they are

 not of the same type

>

Greater than

$x > $y

Returns true if $x is greater than $y

<

Less than

$x < $y

Returns true if $x is less than $y

>=

Greater than or

$x >= $y

Returns true if $x is greater than or equal to $y

 equal to

<=

Less than or equal

$x <= $y

Returns true if $x is less than or equal to $y

 to

PHP Increment / Decrement Operators

• The PHP increment operators are used to increment a variable's value.
• The PHP decrement operators are used to decrement a variable's value.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Operator

Name

Description

++$x

Pre-increment

Increments $x by one, then returns $x

$x++

Post-increment

Returns $x, then increments $x by one

--$x

Pre-decrement

Decrements $x by one, then returns $x

$x--

Post-decrement

Returns $x, then decrements $x by one

PHP Logical Operators

• The PHP logical operators are used to combine conditional statements.

Operator

Name

Example

Result

And

And

$x and $y

True if both $x and $y are true

Or

Or

$x or $y

True if either $x or $y is true

Xor

Xor

$x xor $y

True if either $x or $y is true, but not

 both

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

&&

And

$x && $y

True if both $x and $y are true

||

Or

$x || $y

True if either $x or $y is true

!

Not

!$x

True if $x is not true

PHP String Operators

• PHP has two operators that are specially designed for strings.

Operator

Name

Example Result

.

Concatenation

$txt1 . $txt2 Concatenation of $txt1 and

$txt2

.=

Concatenation
assignment

$txt1 .= $txt2 Appends $txt2 to $txt1

PHP Array Operators

• The PHP array operators are used to compare arrays.

Operator Name Example Result

+ Union $x + $y Union of $x and $y

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

==

Equality

$x == $y

Returns true if $x and $y have the same key/value pairs

===

Identity

$x ===
$y

Returns true if $x and $y have the same key/value pairs
in the same order and of the same types

!=

Inequality

$x != $y

Returns true if $x is not equal to $y

<>

Inequality

$x <> $y

Returns true if $x is not equal to $y

!==

Non-
identit
y

$x !== $y

Returns true if $x is not identical to $y

1. PHP Flow Control Statements
• Sequential (discussed till now)
• Selection(if, if..else,switch …etc)
• Iterative(Loops)

• Very often when you write code, you want to perform different actions for
different conditions. You can use conditional statements in your code to do
this.

In PHP we have the following conditional statements (selection)
• if statement - executes some code if one condition is true

• if...else statement - executes some code if a condition is true and another code
if that condition is false

• if...elseif else statement - executes different codes for more than two conditions

• switch statement - selects one of many blocks of code to be executed

The if Statement

• The if statement executes some code if one condition is true.

Syntax
if (condition) {

code to be executed if condition is true;}

The if...else Statement
The if..... else statement executes some code if a condition is true and another code
if that condition is false.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Syntax

if (condition) {
code to be executed if condition is true;

} else {
code to be executed if condition is false;

}

The if... elseifelse Statement

The if.... elseif... else statement executes different codes for more than two conditions.

Syntax

if (condition) {
code to be executed if this condition is true;

} elseif (condition) {
code to be executed if this condition is true;

} else {
code to be executed if all conditions are false;

}

The switch Statement

• The switch statement is used to perform different actions based
on different conditions.

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch (n)
{ case
label1:

code to be executed if n=label1;
break

; case
label2:

code to be executed if n=label2;
break

; case
label3:

code to be executed if n=label3;
break;

...
default:

code to be executed if n is different from all labels;

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

}

This is how it works: First we have a single expression n (most often a variable), that is
evaluated once. The value of the expression is then compared with the values for each
case in the structure. If there is a match, the block of code associated with that case is
executed. Use break to prevent the code from running into the next case automatically.
The default statement is used if no match is found.

PHP Loops

Often when you write code, you want the same block of code to run over and over again
in a row. Instead of adding several almost equal code-lines in a script, we can use loops
to perform a task like this.

In PHP, we have the following looping statements:

• while- loops through a block of code as long as the specified condition is true

• do...while - loops through a block of code once, and then repeats the loop as
long as the specified condition is true

• for- loops through a block of code a specified number of times

• foreach- loops through a block of code for each element in an array

The PHP while Loop

• The while loop executes a block of code as long as the specified condition is
true.

Syntax
while (condition is true) {

code to be executed;
}

The PHP do...while Loop

The do...while loop will always execute the block of code once, it will then check the
condition, and repeat the loop while the specified condition is true.

Syntax

do {
code to be

executed; } while
(condition is true);

for Loops

• PHP for loops execute a block of code a specified number of times.

The PHP for Loop

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

• The for loop is used when you know in advance how many times the
script should run.

Syntax
for (init counter; test counter; increment counter) {

code to be executed;
}

Parameters:

• init counter: Initialize the loop counter value

• test counter: Evaluated for each loop iteration. If it evaluates to TRUE,
the loop continues. If it evaluates to FALSE, the loop ends.

• increment counter: Increases the loop counter value

The PHP foreach Loop

• The foreach loop works only on arrays, and is used to loop through
each key/value pair in an array.

Syntax

foreach ($array as $value)

{
code to be executed;

}

• For every loop iteration, the value of the current array element is assigned to

$value and the array pointer is moved by one, until it reaches the last array
element.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Unit-2
 Functions
The real power of PHP comes from its functions; it has more than 1000 built-in
functions. Functions are blocks of codes that perform specific task in php. It makes the codes
reusable and shorthand. it can be categorized into two groups.

• Predefined functions
• User defined functions

Predefined Functions

Predefined function (plural predefined functions) (computing) Any of a set of subroutines that perform
standard mathematical functions included in a programming language; either included in a program at
compilation time, or called when a program is executed. Predefined functions are the inbuilt functions of php.
These functions can be subdivided into multiple categories as stated below.

• string functions
• numeric functions
• date and time functions
• array functions
• directory functions

String Function
strtolower(); -> converts all characters of the string to lower case
strtoupper(); -> converts all characters of the string to upper case
ucfirst(); -> converts first letter to upper case
ucwords(); -> converts first letter of each word to upper case
strlen(); -> counts number of characters in a string and returns integer value
trim(); -> trims unnecessary spaces
ltrim(); -> trims unnecessary spaces from left
rtrim(); -> trims unnecessary spaces from right
sprintf("%s,%s,%s",$a,$b,$c); -> placeholder to keep the value
str_word_count() -> count the number of words
$count = str_word_count($x,1) -> returns array
strstr(); echo strstr($str,U,true);
stristr(); case insensitive strstr
str_replace() -> search and replace characters from the string
str_repeat() -> repeats the string
substr(int,int) -> prints a string from defined initial character number to defined last number
strpos() -> finds position of the string

Numeric Function
abs() -> returns positive value of a number
sqrt() -> returns square root of a number
round() -> rounds a floating number
floor() -> rounds a number down to a nearest integer
ceil() -> rounds a number up to a nearest integer
rand() -> generates a random integer
mt_rand() -> generates random number between defined inital and end number
pow() -> returns x raised to the power of y
pi() -> returns the value of pi
min() -> returns the lowest value from an array
max() -> returns the highest value from an array
fmod() -> returns the remainder from x/y {%}
bindec() -> converts a binary number to a decimal number
decbin() -> converts a decimal number to a binary number
deg2rad() -> converts a degree value to a radian value

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Array Functions
array() -> creates an array
sizeof() -> counts the number of values in an array
sort() -> sorts an indexed array in ascending order
in_array() -> checks if a specified value is in array
list() -> keep array values in variable
compact() -> keeps variable values in associative array
arsort() -> sorts an associative array in descending order according to the value
array_unique() -> removes duplicate values from an array
explode() -> converts string to array
implode() -> converts array to string
extract() -> converts array to variable
array_sum() -> returns the sum of values in an array
array_shift() -> removes the first element of an array and returns the first value from the array
array_pop() -> deletes the last element from an array
array_merge() -> merges multiple arrays
array_search() -> searches for a defined value in an array and returns the key for that value
array_reverse() -> returns an array in reverse order
array_keys() -> returns all the keys from an array

PHP Date/Time Functions

PHP date() Function: The PHP date() function converts timestamp to a more readable date and
time format.
Syntax:
date(format, timestamp)
• The format parameter in the date() function specifies the format of returned date and time.
• The timestamp is an optional parameter, if it is not included then the current date and time will

be used.

Formatting options available in date() function: The format parameter of the date() function is a
string that can contain multiple characters allowing to generate the dates in various formats. Date-
related formatting characters that are commonly used in the format string:
• d: Represents day of the month; two digits with leading zeros (01 or 31).
• D: Represents day of the week in the text as an abbreviation (Mon to Sun).
• m: Represents month in numbers with leading zeros (01 or 12).
• M: Represents month in text, abbreviated (Jan to Dec).
• y: Represents year in two digits (08 or 14).
• Y: Represents year in four digits (2008 or 2014).
The parts of the date can be separated by inserting other characters, like hyphens (-), dots (.), slashes
(/), or spaces to add additional visual formatting.

PHP time() Function: The time() function is used to get the current time as a Unix timestamp (the
number of seconds since the beginning of the Unix epoch: January 1, 1970, 00:00:00 GMT).
The following characters can be used to format the time string:

• h: Represents hour in 12-hour format with leading zeros (01 to 12).
• H: Represents hour in 24-hour format with leading zeros (00 to 23).
• i: Represents minutes with leading zeros (00 to 59).
• s: Represents seconds with leading zeros (00 to 59).
• a: Represents lowercase antemeridian and post meridian (am or pm).

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

• A: Represents uppercase antemeridian and post meridian (AM or PM)

checkdate() Validates a Gregorian date
date_diff() Returns the difference between two dates
date_format() Returns a date formatted according to a

specified format
date_time_set() Sets the time
getdate() Returns date/time information of a timestamp or

the current local date/time

PHP User Defined Functions

• Besides the built-in PHP functions, we can create our own functions.
• A function is a block of statements that can be used repeatedly in a program.
• A function will not execute immediately when a page loads.
• A function will be executed by a call to the function.

Defining a Function in PHP

A user-defined function declaration starts with the word function:

Syn
tax

function
functionName() {

code to be executed;
}

• Function names are NOT case-sensitive.

In the example below, we create a function named "writeMsg()". The opening curly
brace ({) indicates the beginning of the function code and the closing curly brace (})
indicates the end of the function. The function outputs "Hello world!". To call the
function, just write its name:

Example
<html>
<body>
<?php
function
writeMsg() echo
"Hello world!";
}
writeMsg();
?>
</body>

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

</html>

PHP Function Arguments

• Information can be passed to functions through arguments. An argument is just

like a variable.
• Arguments are specified after the function name, inside the parentheses. You can

add as many arguments as you want, just separate them with a comma.

PHP Default Argument Value

The following example shows how to use a default parameter. If we call the
function setHeight() without arguments it takes the default value as
argument:

Example

<html>
<body>
<?php
function setHeight($minheight = 50) {

echo "The height is : $minheight

";

}
setHeight(3
50);
setHeight();
setHeight(1
35);
setHeight(8
0);
?>
</body>
</html>

PHP Functions - Returning values

To let a function return a value, use the return statement:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Unit-3

PHP Forms

PHP forms allow users to input data, which is processed and handled by the PHP server. PHP handles form

submissions using superglobals like $_GET, $_POST, and $_REQUEST

HTML Form Basics

A basic HTML form uses the <form> tag. The action attribute specifies the script where the form data is

sent, and the method attribute specifies how the data is sent.

Example:

html

Copy code

<form action="process_form.php" method="POST">

 <label for="name">Name:</label>

 <input type="text" id="name" name="name">

 <label for="email">Email:</label>

 <input type="email" id="email" name="email">

 <input type="submit" value="Submit">

</form>

• action: Specifies the target PHP script (e.g., process_form.php).

• method:

o GET: Appends data to the URL.

o POST: Sends data securely in the HTTP body.

PHP Form Processing

$_GET

• Retrieves data sent via the HTTP GET method.

• Appends data to the URL (e.g., example.com/form.php?name=John).

• Example:

php

Copy code

$name = $_GET['name']; // Access 'name' from URL query string

$_POST

• Retrieves data sent via the HTTP POST method.

• Data is sent in the request body, making it more secure than GET.

• Example:

php

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Copy code

$email = $_POST['email']; // Access 'email' from form data

$_REQUEST

• Retrieves data from both $_GET and $_POST arrays, as well as $_COOKIE.

• Not recommended due to potential security concerns (ambiguity about the source).

• Example:

php

Copy code

$data = $_REQUEST['data'];

$_FILES

• Handles file uploads.

• Provides details such as file name, size, and type.

• Example:

php

Copy code

$fileName = $_FILES['uploadedFile']['name'];

move_uploaded_file($_FILES['uploadedFile']['tmp_name'], 'uploads/' . $fileName);

2. Server and Global Variables

$_SERVER

• Contains server and environment information (e.g., headers, paths, and script locations).

• Example:

php

Copy code

$scriptName = $_SERVER['SCRIPT_NAME']; // Current script name

$GLOBALS

• A superglobal array containing all global variables.

• Rarely needed; better practices involve using function arguments or class properties.

$_ENV

• Stores environment variables.

• Example:

php

Copy code

$envVar = $_ENV['MY_ENV_VAR']; // Access an environment variable

3. Input/Output Controls

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Sanitizing and Validating Input

• Use PHP filters to validate and sanitize input:

php

Copy code

$email = filter_input(INPUT_POST, 'email', FILTER_SANITIZE_EMAIL);

if (filter_var($email, FILTER_VALIDATE_EMAIL)) {

 echo "Valid email.";

} else {

 echo "Invalid email.";

}

Output Escaping

• Prevent Cross-Site Scripting (XSS) attacks:

php

Copy code

echo htmlspecialchars($userInput, ENT_QUOTES, 'UTF-8');

4. Validation Techniques

• Client-side validation: Use JavaScript for quick feedback.

• Server-side validation: Always validate on the server to ensure security.

5. Cookies

• Store small amounts of data on the user's browser.

• Example:

php

Copy code

setcookie("username", "John", time() + (86400 * 30), "/"); // Set a cookie for

30 days

if (isset($_COOKIE['username'])) {

 echo "Welcome " . $_COOKIE['username'];

}

6. Sessions

• Store user data across multiple pages on the server.

• Example:

php

Copy code

session_start(); // Start a session

$_SESSION['user'] = "John"; // Store session data

echo $_SESSION['user']; // Access session data

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

File Handling in PHP

File handling in PHP allows you to create, open, read, write, append, and manage files and directories.

Opening and Closing Files

• fopen(): Opens a file.

php

Copy code

$file = fopen("example.txt", "r"); // Open file in read mode

fclose($file); // Close the file

• Modes for fopen():

o "r": Read only.

o "w": Write only (truncates file or creates a new one).

o "a": Append (write at the end of file or create a new one).

o "x": Create a new file for writing (fails if file exists).

Reading Files

• fread(): Reads content from a file.

php

Copy code

$file = fopen("example.txt", "r");

$content = fread($file, filesize("example.txt"));

fclose($file);

echo $content;

• file_get_contents(): Reads the entire file into a string.

php

Copy code

$content = file_get_contents("example.txt");

echo $content;

Writing to Files

• fwrite(): Writes content to a file.

php

Copy code

$file = fopen("example.txt", "w");

fwrite($file, "Hello, World!");

fclose($file);

• file_put_contents(): Writes a string to a file.

php

Copy code

file_put_contents("example.txt", "Hello, PHP!");

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Appending to Files

• Open the file in append mode ("a") and use fwrite():

php

Copy code

$file = fopen("example.txt", "a");

fwrite($file, " This is an additional line.");

fclose($file);

Deleting Files

• unlink(): Deletes a file.

php

Copy code

if (file_exists("example.txt")) {

 unlink("example.txt");

 echo "File deleted.";

}

2. Directory Handling

Creating a Directory

• mkdir(): Creates a directory.

php

Copy code

mkdir("my_directory");

Reading Files in a Directory

• scandir(): Retrieves an array of all files and directories.

php

Copy code

$files = scandir("my_directory");

foreach ($files as $file) {

 if ($file !== "." && $file !== "..") {

 echo $file . "
";

 }

}

Checking if a File Exists

• file_exists(): Checks if a file or directory exists.

php

Copy code

if (file_exists("example.txt")) {

 echo "File exists.";

} else {

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

 echo "File does not exist.";

}

Getting File Size

• filesize(): Returns the size of a file in bytes.

php

Copy code

$size = filesize("example.txt");

echo "File size: $size bytes";

Renaming Files or Directories

• rename(): Renames a file or directory.

php

Copy code

rename("old_name.txt", "new_name.txt");

3. File Uploading

HTML Form

html

Copy code

<form action="upload.php" method="POST" enctype="multipart/form-data">

 <input type="file" name="fileToUpload">

 <input type="submit" value="Upload">

</form>

PHP Script (upload.php)

php

Copy code

if ($_FILES['fileToUpload']['error'] == 0) {

 $targetDir = "uploads/";

 $targetFile = $targetDir . basename($_FILES["fileToUpload"]["name"]);

 if (move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $targetFile)) {

 echo "File uploaded successfully.";

 } else {

 echo "File upload failed.";

 }

}

4. File Downloading

php

Copy code

$file = "example.txt";

if (file_exists($file)) {

 header('Content-Description: File Transfer');

 header('Content-Type: application/octet-stream');

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

 header('Content-Disposition: attachment; filename="' . basename($file) . '"');

 header('Content-Length: ' . filesize($file));

 readfile($file);

 exit;

}

5. Reading Selected Files

To read and display specific files based on user input:

php

Copy code

$selectedFile = "example.txt"; // Assume this is selected by the user

if (file_exists($selectedFile)) {

 echo nl2br(file_get_contents($selectedFile));

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Unit -4

Introduction

Sure the idea of dynamic web pages is cool, but you can only go far with what’s built into PHP, like

changing the page based on the day of the week. What you’d really like to do is make a web page

unique for each visitor, and that’s where databases come in.

We will begin this chapter assuming that the reader has absolutely no knowledge of MySQL or

databases. First, we’ll explain databases, then we’ll create one the easy way

— using phpMyAdmin. Then we’ll cover how to create databases and tables using SQL,

and in the next chapter we’ll show how all this can be done using PHP.

What are Databases?

Databases help to organize and track things. Databases allow you to use creativity to

group things together in meaningful ways, and to present the same set of information in

different ways to different audiences.

Database is simply an organized collection of data stored in a computer.

Databases are composed of one or more “tables”. Tables are composed of parts called

“rows” and “columns” similar to what you would see in a spreadsheet. The columns section

of each table declares the characteristics of each table while each row contains unique data

for each element in the table.

It may sound complicated but actually it is quite simple. Take the example below

Table: Cars

https://www.google.com/search?rlz=1C1CHBF_enIN1032IN1032&sxsrf=AJOqlzUATkO1KuNVvonSRW5bc9RP_TiVUQ:1677475747237&q=Database+is+simply+an+organized+collection+of+data+stored+in+a+computer&spell=1&sa=X&ved=2ahUKEwiR8aGQ_LT9AhXiXWwGHaHEA7UQBSgAegQICBAB

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

We can clearly see that the elements in this table has seven columns defined as ID, VIN, Make,

Model, Style, Year, and Price. The table has four rows that describe four different cars—a Ford

Explorer, Dodge RAM, Mazda 6, and a Subaru Outback.

Here is a quick review of what we have learned.

Tables are just a collection of things that you want to keep track of.

Tables consist of rows and columns.

Columns hold the different attributes of each element in that table. Rows in a table

hold different instances uniquely defined by the table’s columns. Databases are a

collection of tables.

Getting Started with phpMyAdmin

 just enter this address into your browser or click on this link:

http://localhost/phpmyadmin/ Clicking that link should take you to a page that is

similar to this:

http://localhost/phpmyadmin/

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

What is phpMyAdmin?

phpMyAdmin is a free software tool—that just happens to be written in PHP itself— that

is intended to handle many common administration tasks of MySQL using a browser.

phpMyAdmin supports a wide range of operations with MySQL. The most frequently used

operations are supported by the user interface (managing databases, tables, fields, relations,

indexes, users, permissions, etc), and you still have the ability to directly execute a SQL

statement if you prefer.

Using phpMyAdmin to create a database

First navigate such that you have phpMyAdmin on the screen. Click on the link that

says Databases:

In the box that says Create new database, type the word ‘Cars’, then click on the Create

button. If it worked properly, you should see a yellow confirmation box appear on the

screen briefly, as below:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Introduction to SQL

This is equivalent to issuing the SQL command

and, in fact, phpMyAdmin actually executed that exact SQL command in the

background for you when you clicked on the button. In other words, you can think of

phpMyAdmin as a tool that builds SQL commands for you.

SQL (pronounced "sequel") or Structured Query Language) is a language all

its own. SQL is a special-purpose programming language designed for managing

data in relational database management systems, such as MySQL. SQL can be

used to create databases, create tables, and insert, update, and delete data into

tables.

Using phpMyAdmin to create a Table in a database

Now that the database is created, we would like to use it. Find the cars database in the

list of databases, then click on the database name.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

phpMyAdmin will provide a page similar to:

This is the equivalent to the SQL command:

This tells the MySQL database that you are going to work in the database *cars* until

you say otherwise.

You have just created the database for our fictional used car lot. We will develop this

database more as we go along.

Defining our first table

So far, you have created your database, and figured out the general structure of

PHPMyAdmin. Now you will need to put a table inside of the database you have

created. In the case of our cars database, we will need to define the table to describe the

cars and trucks that Sam has for sale on his used car lot.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Before creating your table, think about what you are going to put into the table and what are

the various attributes that might distinguish one row (car) from another.

What defines an automobile?

I can think of a number of properties or attributes that distinguish one car from

another on a used car lot.

Vehicle ID Number (VIN)

Year

Make

Model

Trim

Exterior color

Interior color

Asking Price

Purchase Price

Mileage

Transmission

Purchase Date

Sale Date

Sale Price

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

That should be enough to at least let us get started. Now we have to figure out

what kind of data we are going to put in these categories.

Datatypes

For learning purposes, there are really only three types of data you will need to use.

They are:

1. Numbers

2. Characters

3. Dates

Numbers

Numbers, as the name probably gives away, are any kind of numeric information. Will you

need to use any kind of decimals for the data that you are going to store? In that case,

you will need to use the datatype decimal or float. If not, you can use the datatype int

(short for integer) or bigint (a big integer—which takes up more space, but can handle

bigger numbers).

Characters

The character type in MySQL is the data type you use to store Strings. Characters are used

to store the representation of a letter, word, or series of words. For example the letter A and

the phrase ‘Hello World’ would both be of a character type. MySQL calls this a VARCHAR,

short for variable characters It is variable because you only set the maximum number of

characters that the field can hold, and if you put in a value with fewer characters, the shorter

value will be stored. Other databases, such as Microsoft SQL Server, offer the CHAR

datatype, which will fill in any unused characters with spaces. Why anyone would want that

I can’t imagine, so for simplicity we’ll stick to VARCHAR for now.

Use the datatype varchar(n) to define a column that you would like to represent with a

character. Substitute the n in varchar(n) with the maximum amount of letters a column

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

in your table can have (up to 255). Spaces, tabs, and newlines in a paragraph all count

as characters.

Dates

Dates are a way to store dates in the database. Do you just want to store the date and not the time?

Use the datatype date. Do you want to store the time and not the date? Use the datatype time. Want

to store the date and the time? Use the datatype datetime.

Let’s look back at our characteristics of cars to decide what kind of datatype they should

be.

Vehicle ID Number (VIN) – All over-the-road-vehicles have a 17-character VIN,

which does not include the letters I (i), O (o), or Q (q) (to avoid confusion with

numerals 1 and 0). Varchar(17)

Year - Consists of numbers without a decimal point. Int

Make – Consists of text. Varchar(25)

Model – Consists of text and the occasional number. Varchar(25)

Trim – Consists of text. Varchar(25)

Exterior color – Consists of text. Varchar(25)

Interior color – Consists of text. Varchar(25)

Asking Price - Consists of numbers with decimal point. Decimal

Purchase Price - Consists of numbers with a decimal point. Decimal

Mileage - Consists of numbers without a decimal point. Int
Transmission – Consists of text. Varchar(25) Purchase (Acquisition)

Date - Date

Sale Date - Date

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Sale Price - Consists of numbers without a decimal point. Int

That about sums up the table that we need to create to track our cars. Since the VIN is the

only truly unique element in the list, we will make this the “Primary Key”.

Defining a column as a primary key means that the column will only be able to have unique values

(i.e. nothing can repeat itself). In the case of this specific table, it means that you can’t enter two

cars with the same VIN into the database, because we have just told mySQL that this isn’t allowed.

Some examples of this in everyday life are license plate numbers, credit card numbers, and social

security numbers. All of these numbers are supposed to unique for each person. The same concept

applies to tables in databases. Whenever possible, it is good practice to make sure that the table

you are creating contains some form of primary key to give something to uniquely identify a row.

How do I make a table with this information? Great question. Although we created the database

using the phpMyAdmin wizard, from now on we’re just going to use SQL.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

In your window with phpMyAdmin, make sure that the cars table is selected (see it circled

in red below), then click on the SQL tab to bring up the command box. Make sure that you

see localhost -> cars above the box. If you do not, just click on the cars link on the right

side and then the SQL tab to get yourself there.

Type the following command into the box and click go.

CREATE TABLE INVENTORY (VIN varchar(17) PRIMARY KEY, YEAR INT,

Make varchar(50), Model varchar(100), TRIM varchar(50), EXT_COLOR

varchar (50), INT_COLOR varchar (50), ASKING PRICE DECIMAL (10,2),

SALE PRICE DECIMAL (10,2), PURCHASE_PRICE DECIMAL (10,2),

MILEAGE int, TRANSMISSION varchar (50), PURCHASE_DATE DATE,

SALE_DATE DATE)

Congratulations! You have created the INVENTORY table.

Here’s an incredibly useful tip: Click the link “Create PHP Code” located on the right

side of the screen and what you’ll get back is:

$sql = "CREATE TABLE INVENTORY (VIN varchar(17) PRIMARY KEY,

YEAR INT, Make varchar(50), Model varchar(100), TRIM varchar(50),

EXT_COLOR varchar (50), INT_COLOR varchar (50), ASKING PRICE

DECIMAL (10,2), SALE PRICE DECIMAL (10,2), PURCHASE_PRICE

DECIMAL (10,2), MILEAGE int, TRANSMISSION varchar (50),

PURCHASE_DATE DATE, SALE_DATE DATE)";

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

The reason there is such a link is because anything you can do in mySQL using a SQL

command, you can tell PHP to do for you in code. This represents a valid line of PHP code

in which the variable $sql is assigned a string value to hold the SQL statement. Of course,

there is more that would need to be done beyond this single line of code, but don’t worry—

we will cover this shortly.

Exercise: Create a Table

Create a table using a SQL statement, then delete the table and create it again using

phpmyAdmin. Which is easier?

Working with SQL Statements

INSERT Statements

Now that you have a table created, the next logical step is to put some data into our table.

In the world of SQL, this is accomplished with the INSERT command.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Click on the SQL tab again, type the following command (if you can), and press enter.

Obviously, writing SQL isn’t conceptually difficult… but it is tedious and prone

to error, especially as the statement gets longer. This statement:

is pretty easy to follow, but this next one is a bit tougher:

The only difference is the number of fields. The syntax is the same, but the challenge

becomes making sure that there is a one-to-one relationship for each column name and

value, and that they are in the right order—the column names and their respective

values, that is.

As you can see, writing an INSERT statement is easy to goof up. We all do it. Luckily,

phpMyAdmin makes it easy to generate perfect SQL statements. Simply click on the table, then

click the Insert button and enter values into the boxes, as shown:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Once you click the Go button, phpMyAdmin will create a SQL statement for you and insert

the record, and even offer to convert it into a line of PHP code for you.

Here’s a trick used by the professionals: once you have one line of SQL that works, it’s

pretty easy to copy and paste it and tweak the values for the next car. Go ahead and

enter some more values until you get 5 or 6 cars entered into your table. Here’s another

one:

Don’t worry if you mess up. MySQL will warn you, and prevent you from running incorrect

commands. You don’t need to enter 10 or 20 cars; the sample code includes a script that does that

for you. Just do it enough times that you get it.

SELECT Statements

The syntax of SQL is pretty straight forward, at least syntactically. We have used it thus far to create

a database, create a table within that database, and insert data into the table.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

There are just a few basic transactions left for us to master: reading data, updating data,

and deleting data. Some people refer to this with the cheery acronym CRUD, for Create,

Read, Update, and Delete.

Reading data is accomplished using the SELECT statement. The SELECT statement

selects a value or group of values from a table and returns those value(s) to the user.

Here’s an easy way to remember it: The SELECT statement allows you to be

selective. Clever, eh?

Let’s start out with a simple SELECT statement. In phpMyAdmin, click on the cars

icon on the left side and then click on the SQL tab at the top of the page. Type in the

following command and press Go.

SELECT * FROM inventory;

In general, the asterisk character (*) in computer lingo is called a wildcard and basically

means “everything”, so the result of the command above should return all rows and

columns of the inventory table, and look similar to:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

If you typed out this statement correctly, you should see the entire contents of your table

‘inventory’. To select only certain columns of a table, type out all of the columns you

want to see in that table separated by a comma. Type in the following command and

press Go.

You should see something like this:

Note that I added the red circle and line to show you where to look. The mySQL database

only returned the columns you specified using the SELECT statement.

WHERE Statements

So far, you have learned how to get all the rows and columns from a table, and how to

get selected columns from a table, but what about selected rows?

This is where the WHERE statement comes into play. The WHERE statement gives a

specific set of criteria to the MySQL database so that the results are much more controlled

and relevant to what you want. For example, say that you want to select all the Ford

Explorers that are in the inventory, or all the Toyotas under $15,000. The WHERE clause

makes this possible.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

The results should be every automobile made by Ford in the database. If you wanted

just Ford Explorers, you would need to have WHERE Make=‘Ford’ AND Model =

‘Explorer.

Of course, if you were looking to buy a car, you would only be interested in those cars that

haven’t already been sold, so the following query might be better suited:

NULL is a special word meaning that the field does not contain a value, and for some

reason you can’t say = NULL, you have to say IS NULL. I’m sure there is a reason for

this, but it doesn’t really matter. It is what it is.

Comparison Operators

Theze are many different comparison operators in addition to = and IS.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Remember to surround a string with quotations or parentheses every time you wish

to use them in SQL statements. They will not work otherwise. Also, the WHERE

command always goes after the SELECT statement in MySQL.

To find all of the automobiles with a year that is a 2010 or newer, it is fairly obvious

that we need to use the Greater Than Or Equal To operator defined above. Type the

following command into your compiler and press Go.

ORDER BY

The ORDER BY statement is probably one of the easiest and handiest commands

in SQL. You can attach it at the end of any SELECT statement to put the results in

the order of the column that you specify.

The above statement should display the automobiles in order of the column ‘Year’

with the newest cars at the top. This is because the modifier DESC, or descending, is

placed at the end of the command.

The above statement should display the automobiles in order of the column ‘Year’

with the oldest cars at the top. This is because the modifier ASC, or ascending, is

placed at the end of the command.

The ORDER BY modifier can also be used with a WHERE statement such as:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Just remember that the WHERE command always goes before the ORDER

BY command. If you mix them up, you will get an error.

To limit how many results you receive in an ORDER BY statement, use the limit

clause after you write ‘asc’ or ‘desc’, such as

SELECT * FROM inventory ORDER BY YEAR DESC limit 10;

The number after limit determines how many results are returned.

UPDATE Statements

To update existing records in a database, you use the UPDATE statement. This

would be useful, for example, when a car in the inventory goes on sale with a lower

asking price.

The syntax for an update statement is

To change the asking price for a car in our database, you can use a statement such as:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

DELETE Statements

To delete records from a database you use the DELETE statement, specifying the

table name and a WHERE clause that specifies which records to delete.

For example, to delete the Caravan cars from the inventory you could use a command

similar to

If you wanted to delete everything from a database table, you could skip the WHERE

clause and use our friend the wildcard with a statement like

Delete * from inventory

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Unit -5

Using mySQL and PHP Together

In the previous chapter, we learned all the basics of using a database, in our case mySQL.

All the SQL statements that we learned so far would likely work with other database

systems, in this chapter, we’re going to use PHP and mySQL together. This is where

it really starts to get good.

Code Listing: createdb.php

1. <?php

2. /**

3. * Joy of PHP sample code

4. * Demonstrates how to create a database, create a table, and insert records.

5. */

6.

7. $mysqli = new mysqli(‘localhost’, ‘root’, ‘mypassword’);

8.

9. if (!$mysqli) {

10. die(‘Could not connect: ‘ . mysqli_error($mysqli));

11. }

12. echo ‘Connected successfully to mySQL.
’;

13.

14.

15. /* Create table doesn’t return a resultset */

16. if ($mysqli->query(“CREATE DATABASE Cars”) === TRUE) {

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

17. echo “<p>Database Cars created</P>”;

18. }

19. else

20. {

21. echo “Error creating Cars database: ” . mysqli_error($mysqli).”
”;

22. }

23. //select a database to work with

24. $mysqli->select_db(“Cars”);

25. Echo (“Selected the Cars database”);

26.

27. $query = ” CREATE TABLE INVENTORY

28. (VIN varchar(17) PRIMARY KEY, YEAR INT, Make varchar(50), Model varchar(100),

29. TRIM varchar(50), EXT_COLOR varchar (50), INT_COLOR varchar (50), ASKING_PRICE

DECIMAL (10,2),

30. SALE_PRICE DECIMAL (10,2), PURCHASE_PRICE DECIMAL (10,2), MILEAGE

int, TRANSMISSION varchar (50), PURCHASE_DATE DATE, SALE_DATE DATE)”;

31. //echo “<p>***********</p>”;

32. //echo $query ;

33. //echo “<p>***********</p>”;

34. if ($mysqli->query($query) === TRUE)

35. {

36. echo “Database table ‘INVENTORY’ created</P>”;

37. }

38. else

39. {

40. echo “<p>Error: </p>” . mysql_error();

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

41. }

42. // Dates are stored in MySQL as ‘YYYY-MM-DD’ format

43. $query = “INSERT INTO `cars`.`inventory`

44. (`VIN`, `YEAR`, `Make`, `Model`, `TRIM`, `EXT_COLOR`, `INT_COLOR`, `ASKING_PRICE`,

`SALE_PRICE`, `PURCHASE_PRICE`, `MILEAGE`, `TRANSMISSION`, `PURCHASE_DATE`,

`SALE_DATE`)

45. VALUES

46. (‘5FNYF4H91CB054036’, ‘2012’, ‘Honda’, ‘Pilot’, ‘Touring’, ‘White Diamond Pearl’, ‘Leather’, ‘37807’,

NULL, ‘34250’, ‘7076’, ‘Automatic’, ‘2012-11-08’, NULL);”;

47.

48.

49. if ($mysqli->query($query) === TRUE) {

50. echo “<p>Honda Pilot inserted into inventory table. </p>”;

51. }

52. else

53. {

54. echo “<p>Error inserting Honda Pilot: </p>” . mysqli_error($mysqli);

55. echo “<p>***********</p>”;

56. echo $query ;

57. echo “<p>***********</p>”;

58. }

59.

60. // Insert a Dodge Durango

61.

62. $query = “INSERT INTO `cars`.`inventory` (`VIN`, `YEAR`, `Make`, `Model`, `TRIM`, `EXT_COLOR`,

`INT_COLOR`, `ASKING_PRICE`, `SALE_PRICE`, `PURCHASE_PRICE`, `MILEAGE`,

`TRANSMISSION`, `PURCHASE_DATE`, `SALE_DATE`)

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

63. VALUES

64. (‘LAKSDFJ234LASKRF2’, ‘2009’, ‘Dodge’, ‘Durango’, ‘SLT’, ‘Silver’, ‘Black’, ‘2700’, NULL, ‘2000’,

‘144000’, ‘4WD Automatic’, ‘2012-12-05’, NULL);”;

65.

66. If ($mysqli->query($query) === TRUE) {

67. echo “<p>Dodge Durango inserted into inventory table.</p>”;

68. }

69. else

70. {

71. echo “<p>Error Inserting Dodge: </p>” . mysqli_error($mysqli);

72. echo “<p>***********</p>”;

73. echo $query ;

74. echo “<p>***********</p>”;

75. }

76. $mysqli->close();

77. ?>

Code Explained: createdb.php

Next I’ll walk you through the code, line by line. Please take the time to follow along with

me, as this is the only way to really get it. Yes, every line does matter.

1. <?php

line 1 is the start tag for PHP, and it tells the PHP interpreter that what follows is code,

not HTML.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

2. /**

3. * Joy of PHP sample code

4. * Demonstrates how to create a database, create a table, and insert records.

5. */

6.

lines 2 - 5 are comments. Comments are good, so put lots of comments in your code.

7. $mysqli = new mysqli(‘localhost’, ‘root’, ‘mypassword’);

line 7 creates a variable called $con (for connection) and sets it equal to a built-in

function for connecting to mySQL. You need to supply the hostname, username,

and password for your mySQL server. If you do not have the correct username and

password, you will see this:

9. if (!$mysqli) {

line 9 is the start of an if statement, saying basically “if you are not connected”. The

exclamation point is the not operator. The point of this line is to test to see if line 7

succeeded.

10. die(‘Could not connect: ‘ . mysqli_error($mysqli));

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

line 10 is what to do if the connection failed. ‘die‘ is a command that stops further code execution

and prints out the text that follows. If I had been the one who invented PHP, I might have named

that command ‘stop’ rather than ‘die’, but it does make the point.

11. }

12. echo ‘Connected successfully to mySQL.
’;

line 12 prints out “Connected successfully to mySQL”. This is the first line you see in

the browser.

15. /* Create table doesn’t return a resultset */

16. if ($mysqli->query(“CREATE DATABASE Cars”) === TRUE) {

17. echo “<p>Database Cars created</P>”;

18. }

19. else

20. {

21. echo “Error creating Cars database: “. mysqli_error($mysqli)).”
”;

22. }

Line 15 is a comment that explains the function of the next line.

Line 17 prints to the browser if the SQL statement in line 15 ran without error.

Line 21 prints error information to the browser if the SQL statement in line 15 did not

run successfully.

23. //select a database to work with

line 23 is a comment. Comments are good.

24. $mysqli->select_db(“Cars”);

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

line 24 creates a variable called $selected which uses a built-in function for selecting

a mySQL database, using the connection created in line 7.

25. Echo (“Selected the Cars database”);

line 25 prints “Selected the Cars database” to the browser.

27. $query = ” CREATE TABLE INVENTORY

28. (VIN varchar(17) PRIMARY KEY, YEAR INT, Make varchar(50), Model varchar(100),

29. TRIM varchar(50), EXT_COLOR varchar (50), INT_COLOR varchar (50), ASKING_PRICE

DECIMAL (10,2),

30. SALE_PRICE DECIMAL (10,2), PURCHASE_PRICE DECIMAL (10,2), MILEAGE

int, TRANSMISSION varchar (50), PURCHASE_DATE DATE, SALE_DATE DATE)”;

lines 27 - 30 creates a variable called $query which holds an SQL statement. Recall that

phpMyAdmin created this line of code for us. Good thing too, as it is an easy one to

goof up.

31. //echo “<p>***********</p>”;

32. //echo $query ;

33. //echo “<p>***********</p>”;

lines 31 - 33 are comments now, but previously they were part of the script that printed out

the value of the variable $query. I had this in there to help me figure out why it didn’t work

at first, and I leave it in there as an example of what to do when as script doesn’t do quite

what you thought it would. I then copied the output of line 32 to the clipboard and pasted it

into phpMyAdmin for syntax advice.

34. if ($mysqli->query($query) === TRUE)

line 34 executes a SQL statement “query($query)” then tests for the result of the SQL

statement held in the variable $mysqli.

35. {

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

36. echo “Database table ‘INVENTORY’ created</P>”;

37. }

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

line 36 prints the message “Database table ‘INVENTORY’ created” if line 34 is

a success.

38. else

39. {

40. echo “<p>Error: </p>”. mysqli_error($mysqli));

41. }

line 40 prints the message “Error:” and the mySQL error if line 34 fails. Hopefully the

value returned by mysql_error() will tell you something helpful about why it failed.

Sometimes it actually does.

42. // Dates are stored in MySQL as ‘YYYY-MM-DD’ format

line 42 is a comment to remind me (and you) to format dates the way mySQL expects

them

43. $query = “INSERT INTO `cars`.`inventory`

44. (`VIN`, `YEAR`, `Make`, `Model`, `TRIM`, `EXT_COLOR`, `INT_COLOR`,

`ASKING_PRICE`, `SALE_PRICE`, `PURCHASE_PRICE`, `MILEAGE`, `TRANSMISSION`,

`PURCHASE_DATE`, `SALE_DATE`)

45. VALUES

46. (‘5FNYF4H91CB054036’, ‘2012’, ‘Honda’, ‘Pilot’, ‘Touring’, ‘White Diamond Pearl’, ‘Leather’,

‘37807’, NULL, ‘34250’, ‘7076’, ‘Automatic’, ‘2012-11-08’, NULL);”;

lines 43 - 46 changes the value of $query to a new SQL statement, this time an INSERT.

49. if ($mysqli->query($query) === TRUE) {

line 49 tests for the execution of the SQL statement held in the variable $query

50. echo “<p>Honda Pilot inserted into inventory table. </p>”;

line 50 prints the message “<p>Honda Pilot inserted into inventory table</p>” if line 49

is a success. The <p> tags put the message on its own line.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

51. }

52. else

53. {

54. echo “<p>Error inserting Honda Pilot: </p>” . mysql_error();

55. echo “<p>***********</p>”;

56. echo $query ;

57. echo “<p>***********</p>”;

58. }

lines 54 - 57 print a message if line 49 fails.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

60. // Insert a Dodge Durango

61.

62. $query = “INSERT INTO `cars`.`inventory` (`VIN`, `YEAR`, `Make`, `Model`, `TRIM`,

`EXT_COLOR`, `INT_COLOR`, `ASKING_PRICE`, `SALE_PRICE`, `PURCHASE_PRICE`,

`MILEAGE`, `TRANSMISSION`, `PURCHASE_DATE`, `SALE_DATE`)

63. VALUES

64. (‘LAKSDFJ234LASKRF2’, ‘2009’, ‘Dodge’, ‘Durango’, ‘SLT’, ‘Silver’, ‘Black’, ‘2700’, NULL,

‘2000’, ‘144000’, ‘4WD Automatic’, ‘2012-12-05’, NULL);”;

65.

66. If ($mysqli->query($query) === TRUE) {

67. echo “<p>Dodge Durango inserted into inventory table.</p>”;

68. }

69. else

70. {

71. echo “<p>Error Inserting Dodge: </p>” . mysql_error();

72. echo “<p>***********</p>”;

73. echo $query ;

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

74. echo “<p>***********</p>”;

75. }

76.

lines 60 -76 does the same thing as 43 - 58, except for a different car.

78. $mysqli->close();

79. ?>

line 78 closes the connection to mySQL.

line 79 is the end tag for PHP, and any text that followed would be treated as HTML,

rather than code.

Hey, where’s the HTML?

The astute reader might have noticed that this script didn’t appear inside the usual pattern of

<HTML><Body> <html code here> <php code here> </Body></HTML>.

Yet it worked. How come? I discovered this quite by accident, actually. It’s not a

function of PHP but apparently some browsers will fill in the HTML framework for you

if you “forget” to do so, which I did one time. Try it yourself. It works. Is this a best

practice? No, I can’t imagine that it is. But while you are learning it does let you focus

on the PHP code.

Creating forms to Display, Add, Edit, and Delete data

Introduction

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

So far we’ve learned how to use SQL to create databases, add records, edit

records, delete records, and select records. Then we learned how to use PHP to

perform those same operations.

Next we’ll get even more awesome. We’ll learn how to use HTML forms along

with PHP to create the SQL statements that perform the operation.

Forms that Add Data to a Database

A Basic Form

Let’s start with a simple example that is easy to follow. Here’s a simple, four-field form:

Obviously, it doesn’t have all the attributes of a car that we have previously identified, and

it’s not very pretty to look at, but it is simple, and it will illustrate the point without any

extra junk to get in the way of your understanding of the concept.

HTML Code

The code to produce such a form follows

<HTML>

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

<head>

<title>Joy of PHP</title>

</head>

<body>

<h1>Sam’s Used Cars

</h1>

<form>

VIN: <input name=“VIN” type=“text” />

Make: <input name=“Make” type=“text” />

Model: <input name=“Model” type=“text” />

Price: <input name=“Asking_Price” type=“text”

/>

<input name=“Submit1” type=“submit” value=“submit”

/>
 </form>

</body>

</html>

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

So far what we have is just HTML, and in fact the form won’t actually do anything

if you press the submit button…yet.

Form Action

To make the form actually do something, we need to modify the <form> tag. Change

the line of code above so that instead of saying <form> it says <form

action=“SubmitCar.php” method=”post”>

This tells the browser that when the form is submitted by pressing the submit button,

it should pass this form to the PHP script entitled ‘SubmitCar.php’ and use the ‘Post’

method to do so.

Forms can be submitted either using method=‘post’ or method=‘get’. There’s really

no good reason to use ‘get’ when submitting a form so to keep things simple, we’ll just

use ‘post’ whenever we submit a form.

We’ll use get later in the book for a different purpose, though.

PHP Code

Here’s what we are going to accomplish. We want the script referenced by the form to get

the values from the form, produce a SQL INSERT statement using those values, write the

SQL statement to the browser so we can see it, execute the SQL statement that we just

created, and finally, let us know if it worked.

If all goes well, the script should output something similar to this:

INSERT INTO Inventory (VIN, Make, Model, ASKING_PRICE)

VALUES (‘9T4BF3EKXBR153775’, ‘Ford’, ‘Fiesta’, 800)

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Connected successfully to mySQL

Selected the Cars database.

You have successfully entered Ford Fiesta into the database.

Here’s the code for the SubmitCar.php file, which is also available in the sample code.

Again, you don’t have to study it here because I will walk you through it next. For now,

just give it a quick look over.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Line 1 is the opening <html> (which is closed on line 53).

Lines 2 – 4 constitute the Head tag, while line 3 sets the page title.

Line 5 opens the body tag (which is closed on line 52). Note that we used the optional

parameter to set the background and text colors.

Line 7 is the opening <php> tag, to signify that the text that follows is code rather than

HTML.

Line 8 is a comment. You can never have too many comments in your code. Get in the

habit early of over-commenting your code. I have never heard anyone complain that the

code they were trying to figure out had “too many” comments distracting from the

elegance of the logic.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Lines 10 – 13 get the values that were on the form and assign them to variables in PHP.

$_REQUEST is a special variable that is used to collect data after submitting HTML

forms. You follow it with the name of the field on the HTML form that you want to

retrieve.

A number of readers of the first edition of this book have commented that you should

never trust the information that users give you, even in a corporate application like this

one,where the users are generally trusted. So a safer way to acheive what we did above

would be to use the PHP function called mysql_real_escape_string to strip out anything

dangerous that users might try to enter. For instance, $Make =

mysql_real_escape_string($_POST[‘Make’]);

Line 15 is a comment. Comments are good.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Lines 17 – 24 build a SQL INSERT command. It could have been all on one line, but it is

easier to read this way. Notice that the variables $VIN, $Make, $Model, and $Price are put

into the formula as they are. Later, when the code is actually executed, PHP will substitute

the variable names with their actual values.

Line 26 is a comment. Comments are good.

Line 27 writes the SQL statement out to the browser, on its own line. The .”
” after

the $query adds a
 to the end of the line. That’s what puts it on its own line. Line 27

was not required for the function to work. It is there so you can see how PHP translated

the variables into their values when producing the SQL statement, which in turn is stored

in the variable $query.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Line 29 makes a connection to the mySQL database by passing the name of the server

(‘localhost’), username (‘root’), password (‘password’), and initial database (‘cars’).

Note your password will likely be different.

Line 30 is a comment, using the alternate syntax for denoting a comment.

Lines 31 – 34 test to see if the connection made with line 29 worked or not. If not, it

prints an error message then stops further code execution (line 33 – exit). exit() is an

alternative to the command die.

Line 36 prints to the browser the message ‘Connected successfully to mySQL’. This line

would not execute if line 33 was called. Since we made it this far, we can conclude that

we did in fact connect.

Line 38 is a comment that explains the purpose of the next line.

Line 39 selects the ‘cars’ database, and line 40 prints this fact.

Line 42 is a comment. You see a theme here, right? The more comments you add, the easier it

will be to figure out your code when you come back later to look at it.

http://php.net/manual/en/function.exit.php

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Line 43 is the grand finale. Here we actually execute the SQL statement against the

cars database. Line 43 is the start of an if statement and line 44 prints a success

message while line 48 prints a failure message.

Note: Line 48 really should read use ‘mysqli_error($mysql)’ not mysql_error(). This is corrected in

the sample code. As an astute reader of the first edition pointed out, you can’t mix mysql and myslqi

in the same script– they are not the same. In any case, the mysql extension has been deprecated

in favor of the mysqli extension.

Line 50 closes the connection to the mySQL database. This is not strictly required, as the page

will still work if you don’t do it, but apparently it’s a good idea because if you don’t do it,

eventually the server will develop problems and ultimately require a reboot.

Line 51 closes the PHP tag that was opened on line 7, signaling that the lines

that follow are html not PHP code.

Lines 52 and 53 close the body tag and the HTML tags, respectively.

Wow, we made it through the whole script. If you are still with me, you have a

good future in PHP development! Stay with it!

A Brief Time Out…include files and SQL Injection

Include Files

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

You may recall from the earlier section on Includes the notion of reusing code by

including the contents of one file in another. This is a good time to revisit this

important topic.

So far we’ve made two different PHP files—the first one to create a database and table, and the

second one in the section above to insert data into the database using a web form. As you can

guess from the section headings coming up later in this chapter, we’re about to make even more

scripts that will allow us to edit and delete data as well.

Each of these scripts will have a something in common—code that connects to the

mySQL database, and in each case that code will be exactly the same. So far, we’ve

been developing on our own computer, so the host name has been ‘LocalHost’.

Imagine yourself, sometime in the near future, having written a dozen or more scripts

into the future, and suddenly you decide to move your application to another

computer—one accessible from the Internet. The host name will not be the same. Nor,

most likely, will the username and password be the same. What if your password got

out and you needed to change it?

Without my helpful intervention right here, you would be facing the prospect of

changing dozens of .php files—searching for the line that reads something like…

…and changing it to reflect the new host name, username, or password. Uck— there

would be no joy in that task at all. From now on, we’re going move the part of the code

that connects to the database to a separate file, and all our new scripts from this point

forward will simply refer to that code using an include statement. If any of the values

change, we will only have to change it in one place… the file that all the others point to.

Just imagine the joy of changing one line of code and seeing that change propagate across

dozens of pages. That’s what I’m talking about. The include feature is one of the most helpful

and important features of PHP, in my humble opinion.

We’ll use the line …

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

… to tell PHP to insert the contents of the db.php file into the current script. Be sure to use include

files whenever you can, as the extra few minutes it takes to move some code out to a separate file

is more than paid back when that code has to change.

SQL Injection

In general, it is not a good idea to take whatever the user enters into a form and pass

that directly to a SQL script as we did in the above example. If the user were malicious

(and skilled) they might enter SQL code into one of your forms and this could have a

big impact on what the script actually does. For example, imagine a basic

username/password form and the user entering ‘or 1=1– into the Password field, as

shown:

Now the statement that is executed in the database is the following:

SELECT * FROM Users WHERE Username= ‘Brian’ and Password= ”or 1 = 1—’

Because 1=1 is always true, this query will return all users. (Note that the last quotation

is commented out.) So, in the script above, sqlsrv_has_rows is true, and all the username

password rows will be returned.

SQL injection is possible here because user input is concatenated with the executed SQL code.

One way to prevent against this is to strip out any slashes or quote marks from the the user’

input. The following code snippet demostrates this:

// To protect against SQL injection

$make = stripslashes($myusername);

$model = stripslashes($mypassword);

$make = mysql_real_escape_string($myusername);

$model = mysql_real_escape_string($mypassword);

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

At the risk of stating the obvious, the stripslashes command removes any slashes the users

and mysql_real_escape command removes the quote characters.

An even better way to reduce the chance for SQL injection is to use prepared

statements, but this is a topic that is beyond the scope of this beginner’s book. If you

want to learn more, here’s a good place to start —>

http://www.dreamincode.net/forums/topic/54239-introduction-to-mysqli-and-

prepared-statements/

Forms that Display Summary Data

One of the first things we’ll want to do for Sam’s Used Cars is to display a list of all

the cars that meet the selected criteria. At first, our criteria will be to select all the cars,

but later on you can modify the query to return only certain cars simply by modifying

the SELECT statement in the code.

The way this will work is that we will execute a SQL Select statement to retrieve

the cars that match the criteria, then loop through all the rows. We’ll put each row

of data into a nicely formatted table.

http://www.dreamincode.net/forums/topic/54239-introduction-to-mysqli-and-prepared-statements/
http://www.dreamincode.net/forums/topic/54239-introduction-to-mysqli-and-prepared-statements/
http://www.dreamincode.net/forums/topic/54239-introduction-to-mysqli-and-prepared-statements/

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

The source code can be found as viewcars.php. If all goes well the page should look

like this:

Of course, the output of a simple script is not particularly attractive to look at, but

with the addition of a bit of CSS we can make it look like this:

But let’s not get too far ahead of ourselves. First, here is the code that produces the

basic version of the table. The output of this script is more interesting if you have a lot

of cars in your database, so if you haven’t done so already, use the script

“createdb.php” included with the sample code to populate your inventory table with a

lot of cars.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Code

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Code Explained

I won’t walk you through every line anymore, as I no longer think you need it. From

now on, I’ll just explain the important ones.

Line 11 is our first use of the include option which refers to an external file named db.php which

will be included in this script just as if it were part of the same file. I highlighted line 11 above in

blue and the code below in blue, in hopes that you would better understand how it works. The

content of the blue box below is substituted into the code for the blue line (11) above, so that both

files are combined into a single script.

The contents of the ‘db.php’ file are shown below:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

The code in the db.php file is identical to the code explained as line 29 in the previous section,

so I won’t explain it again here. That’s another key benefit of include files. Once the code inside

it works, you don’t really have to think about it much anymore.

Line 12 is the query that produces the list of cars to be displayed. In this simple case,

we are selecting all the cars.

Lines 14 – 20 runs the query and displays an error message if the query fails.

Line 23 is an opening tag to create a table with the ID of ‘grid’. The ID is optional but

makes it easy to apply styles to the table later. style=width:80% prevents the column

from extending to fill the entire screen; instead it takes 80% of the width. <tr> starts the

Table Row with the opening <tr> tag.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Lines 24– 27 create the first row of the table, the row that contains the column titles of make,

model, and price. Line 27 is a closing Table Row tag, followed by a new line.

Line 29 sets the value of a variable called $class to ‘odd’ because the first data row in

our table will be odd. As we loop through each row of data, we’ll alternately set the

$class to the value of either ‘odd’ or ‘even’. We do this so we can style the table later to

have alternate rows show different coloring to make it easier on the eyes.

Lines 31 to 37 create a row in the HTML table to correspond with each row in the

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

database table that we extracted using the query. Each table cell contains data from the

mySQL table. For instance, line 34 (echo “<td>” . $result_ar[‘Make’] . “</td>”;)

should produce something like

<td>Ford</td>

because $result_ar[‘Make’] says get the value of Make (one of the columns in the table, and

in this case ‘Ford’) and put it here between the <td> tags. Take the time to really understand

what that line is doing, because if you can understand this, you can do virtually anything!

Remember the . character means join these two strings.

Lines 39 – 46 just alternate the value of $class from even to odd.

Line 47 closes the While loop.

Line 48 closes the table with the </table> tag.

Line 49 closes the mySQL database.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Line 50 indicates the end of the PHP code.

Line 51 is the end of the body in the HTML page.

Finally, line 53 indicates the end of the HTML.

Exercise: Tweaking the SELECT

Go back and modify this code so that it doesn’t select all the cars but rather a subset that pleases you.

Improving the look of the table with CSS

Here’s the CSS that improves the look of the form. This style information is added to the

<head> section of the page, but often people put styles into a separate style sheet too. See the

file viewcarswithstyle.php to see the form in action.

Explaining how CSS works is beyond the scope of this book, and a topic in itself. But

the important thing is to see how easily we were able to change the look of the HTML

table using a little style information. Take a look at the complete style sheet here, and

I’ll explain it next.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

CSS Explained

Line 1 opens the <style> tag, telling the browser that what follows is a style sheet. Line

2 is a comment.

Line 3 says to select an item on the page with the id of Grid. The # symbol is the selector

to select something defined using an id, and what follows is the name of the specific thing

you want to select. See line 23 of the previous PHP script, which set the id of our table to

‘grid’ with the line echo “<table id=‘Grid’ style=‘width: 80%’>; Since we have a table

with an id=‘Grid’, this style will apply.

Everything that follows between the { and the } symbols define the style for that item.

We pick font, border, margin, etc.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Line 11 specifies that the following lines only apply to <td> and <th> tags, if they

appear within an item with an ID of ‘Grid’.

Each line that follows gets more specific about how an item should be formatted. A

specific selector overwrites a general one. So we started off specifying default

formatting for Grid, but later we modified specific elements of the grid item. The next

bit is how we color alternate rows differently:

Line 27 says to selects a <td> tag, within a table row <tr> if it is a member of the class

odd. Look at the HTML that is output by the script. You’ll see a table row for the table

defined like this: <tr class=‘odd’> or <tr class=‘even’>.

There is another selector for the table headers. It does make sense if you look at it long

enough. The # symbol in CSS is a selector. OK, that’s it for now. Maybe someday I’ll

do a “Joy of CSS” book. Let me know…

Modifying the form to link to the detail page

The last thing this form needs is way to link to a specific car. When the site visitor

clicks on a specific car in a row, it should take them to more detail about that specific

car. In other words, it should take them to the ‘car detail’ page. We’re going to have

to make that page, of course.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Note that for this to work we will need to build the detail page because otherwise the

link will naturally fail. Nothing happens automatically. Assuming that the detail page

exists, we can modify the code on line 34 that reads as:

to instead read as:

What this does is create an ‘anchor’ or a link which makes the first column of each

row a clickable link. It should output HTML similar to:

You can see that the URL created will be similar to /viewcar.php?VIN=123234FE221 as

shown above. This tells the browser to open the viewcar.php file and pass it the query string

of VIN= followed by a VIN. It is called a query string because the primary purpose of passing

data to a form this way is so it can use the data in a SQL query—and that’s exactly what we

are going to do.

Remember back when I said to use ‘Post’ rather then ‘Get’ when submitting a form? If

you had used get, clicking the submit button would send to the browser a really long URL

with all the field names and values appended to the end of it as a query string in a format

similar to ?Make=Ford&Model=Explorer, etc. We are going to take advantage of that

technique to create our own query string and pass it to a script.

For now, clicking on the link will only trigger an error, because the viewcar.php file

does not yet exist, but that’s what we’re going to build next.

Forms that Display Detail Data

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Once a site visitor has identified a car that they want more information about, the car

shopper will want to click on a particular car to learn more about it. So we’ll make a

PHP page to handle this. We’ll call this the Car Detail page, and its file name will be

viewcar.php.

Again, we’ll keep the example relatively simple for the purpose of following the logic.

If all goes well, clicking on a car from the previous screen will bring up a form similar

to:

Code

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Code Explained

Line 1 opens the HTML tag and starts the document.

Lines 2 – 4 are the head tags, and in between specifies the document title, ‘Sam’s Used

Cars’.

Line 8 is ordinary HTML; it prints Sam’s Used Cars at the top of the page in a headline

style type.

Line 9 specifies that the current script include the db.php file, which logs into the

mySQL database.

Line 10 creates a variable called $vin and assigns it the value that follows VIN= in the URL

string. Remember, for this form to work, you have to pass it the VIN like this:

/viewcar.php?VIN=123234FE221. We use the command $_GET because when you submit a

form using get the values are appended to the URL in a similar fashion.

Line 11 builds a query using the value passed to the form in the Query String, and assigns it

to the cleverly named variable $query. See why we call it a ‘query string’?

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Lines 12 – 19 run the query against the mySQL database and create something called

a ‘result set’. A result set is the set of data that results from the running of a query. This

result set is assigned to the variable $result.

Lines 20 – 31 loop through ‘all’ the rows returned as a result of the query. In our case,

since VINs are unique we would only expect to get one row of data back, but we are

using basically the same technique we learned in the prior section – Forms that Display

Summary Data.

Lines 22 to 30 assign a series of variables with the values of the specified data columns,

which match the names of the columns in the database table ‘inventory’.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Line 31 closes the while loop.

Forms that Edit Data

If you understand how to make Forms that Add Data to a Database, and you

understand Forms that Display Detail Data, it isn’t much of a stretch (conceptually

anyway) to make a form that Edits data. Simply create a form just like the one you

made to add data, but before displaying it retrieve data from the database and pre-

populate it with values.

Instead of executing a SQL Insert command when the user clicks submit, instead

execute an Update.

Forms that Delete Data

To delete a specific record from a database, you need a way for the user to select the data they

want to delete. You already learned how to do this in the section Forms that Display Summary

Data. In the section Modifying the form to link to the detail page we created an <HREF> link

that takes the user to a detail page, and you can use that same technique to take them to a delete

page, such as the one shown below:

Code to delete data

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Code Explained

Lines 1 – 6 set up the basics of the page. We open an <html>, open and close the <head> tags,

and start the body with a headline proclaiming “Sam’s Used Cars”.

Lines 6 – 7 are also familiar to us by now. We open the php tag and add the insert line

to connect us to our mySQL database.

Line 9 gets the VIN from the query string. Remember, this page will be called with ?

VIN=‘23ABC..’ appended to the end. Line 10 builds a SQL delete statement using the VIN, so

we know which vehicle to delete. Line 11 simply writes the query to screen so we can see the

query we built. It is not strictly required for the function to work.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Lines 14 through 20 do the actual work. Line 14 performs the query, and returns True

if the query succeeds. If so, line 15 prints a success message to the screen, and if not,

line 19 prints a failure message to the screen.

The rest of the page close the database connection, closes the php tag, closes the body

tag, and finally closes the html tag.

Exercise

To add edit and delete functionality, simply add two new columns to the table with the

links for edit and delete, and call the appropriate php page. deletecar.php has been

provided, while editcar.php you will have to make yourself. If you absolutely can’t

get editcar.php to work, I did include it in the sample code. Just do yourself a favor

and TRY to make it.

For the answer to this challenge, look at the sample page viewcarswithstyle2.php,

which is included in the sample code.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Session Variables

Introduction

Variables in PHP typically have a specific and limited scope—generally, a variable is only

available on the page on which it was declared. The prime exception to this rule is when you

declare a variable inside a function, it only works in that function.

But what if you want access to the same variable across multiple pages in your application? For

instance, I’m a regular shopper on Amazon.com. If you are too, you may have noticed that once you’re

logged in, every page has your name on the top of it.

Presumably, there is a variable in a script somewhere called something like $FirstName

containing the value ‘Alan’. By now, you could probably easily write such a script.

Here’s a hint:

But how does that value $FirstName pass from page to page as I wander about the site?

And how does the site keep track of hundreds of unique $FirstName variables for all the

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

unique customers who happen to be on the site at the same time? The answer is session

variables.

Sessions

A session variable is a special kind of variable that, once set, is available to all the pages

in an application for as long as the user has their browser open, or until the session is

explicitly terminated by the developer (you).

The great thing about session variables is that PHP will magically keep track of which

particular session variable goes with each particular user. So while my Amazon.com

experience will always say “Alan’s Amazon”, yours will say something different (unless

your name also happens to be Alan, of course.) Sessions work by creating a unique id

(UID) for each visitor and storing variables based on this UID. The UID is typically

stored in a cookie.

It doesn’t really matter how they work, the important thing is that they do work. And, they are

very cool. They open up a whole realm of possibilities for customizing your web application

for a specific customer. For example, in the case of Sam’s Used Cars, you could ask a

customer their preferred car color, make/model, features, etc. From that point on, you can

customize the pages to reflect the customers’ preferences. For example, Hey look, this car has

a sunroof! (And it’s red too!) It’s just a sample app, so it’s OK to code annoying features to

learn something valuable.

Once a user closes their browser, the cookie will be erased and the session will end. So sessions

are not a good place to store data you intend to keep for long. The right place to store long-term

data is in a database. Of course, sessions and databases can work together. For instance, you can

store a user’s preferences in a database, and retrieve them from the database when the user “logs

in” or types in their email address or does whatever it is that you coded for them to identify

themselves. Once the data is retrieved, assign the preferences to the session variables and they will

be available from then on.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Starting a PHP Session

Before you can store user information in your PHP session, you must first start up the

session using the session_start() function. The session_start() function must appear

BEFORE the <html> tag, or it won’t work.

The code above will start the user’s session with the server and allow you to start saving

user information into session variables.

Using Session Variables

The correct way to store and retrieve session variables is to use the PHP $_SESSION

variable:

Store a variable

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Retrieve a variable

Output: Alan’s Amazon

Checking for a variable

You can check to see if a session variable is available or not by using the isset()

function.

Here’s an example:

Destroying a Session

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

If you wish to delete some session data, you can use the unset() function. If you want to

delete it all, use the session_destroy() function. The unset() function is used to delete a

specific session variable:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

You can also completely destroy all the session by calling the session_destroy()

function:

Note: session_destroy() will reset your session and you will lose all your stored session

data. This is an easy way to implement a logout function.

If you would like to learn more about Session Variables, I have a whole book on this

topic titled “The Joy of PHP: Deep Dive into Sessions”.

Working with Images

Introduction

A used car web site would not be of much use to the typical car shopper without providing

images of the cars, so in this chapter we will cover how to add images to our site. It would

be rather simple if each car had a single image associated with it—in that case, we could

simply add an additional column to our inventory table called ‘image’ (or something

equally descriptive, such as ‘primary_image’) which would store the file name of the

image associated with the particular car.

Then we would build PHP to retrieve the image name and insert it into an HTML image

tag on the car details page.

http://www.w3schools.com/tags/tag_img.a

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Of course, PHP would be well suited for this. We would read the file name from the

database and use PHP to create the image tag dynamically.

For instance, we could modify our earlier example, which shows the detail for a specific

car by adding the lines highlighted in red as follows:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

This example assumes that we have a column in our database called Primary_Image, which

contains the file name of an image file that is stored on our server. The sample files home page

contains a script that makes this modification, if you are so inclined.

If the images were in a folder called ‘images’, the line would read:

Exercise: Viewing Images

Get the above example to work. Create an images folder underneath the folder that is

running the car lot application and put some images into it. Modify your inventory table

to add a Primary_Image field and enter some values in that field to associate specific

cars with specific images.

Make a copy of the viewcar.php script (call it viewcar-backup.php in case you need it later),

then modify the viewcar.php as shown in red above so that it reads the image location out of

the database and inserts the image into the page using the tag.

Pulling an unknown number of images from a database

Assuming you got the above exercise to work, you must admit that it is pretty slick.

Congratulations, you are officially awesome. But, we can do much more. Just having one image

of a car doesn’t really reflect the reality of a visitor’s expectation of a car site. More likely a visitor

to Sam’s Used Cars web site would want to see many images of a car he or she is interested in,

and our site will have to accommodate this. Some cars might have only one image, but some might

have 10 or more. It will be different for each car. So how would we accomplish this? Having a

single column called Primary_Image is obviously not the permanent solution. As soon as you

show it to Sam, he’ll surely say ‘But what if I have two pictures of the car to show?’ That’s the

nature of web development sometimes. One good idea sparks another. Don’t get

frustrated when this happens, but rather think to yourself, ‘Wow, I inspired an even

better idea!’

The easiest way to handle a variable number of images would be to create a database

table to store them in.

Let’s add a table called ‘images’ to our cars database. It should have the columns ID,

VIN, and ImageFile.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Exercise: Create a Database Table to store images

Use phpMyAdmin to create this table, like so.

Now you need to populate the table with some sample data. Here’s what I did. Go to

http://www.cars.com and search for some cars. Copy the VIN to the clipboard, and save some the

pictures of the car to your hard drive. Enter a row in the images table for each of the images you

save, and enter the VIN of the car for each one. There should also be a corresponding entry in the

inventory table for that car, with the exact same VIN. It’s easy to do in phpMyAdmin. Don’t worry

about trying to automate that part of it yet.

Exercise: Modify the viewcar.php page to show multiple images

Once you have some sample data that matches up specific VINs with specific images,

it’s actually pretty easy to display those images on the page along with the description

of the car. Here’s a code snippet you can append to the viewcars.php form to extract the

names of the images for the selected car.

The assumption of this script is you have the VIN of the car in the variable $vin, and that

you have included ‘db.php’ to establish the database connection.

http://www.cars.com/

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Code explained

Line 2 sets up the query whereby we select all the fields in the images table for the

specific car (WHERE VIN=).

Line 4 runs the query and checks to see if any results were returned from the database.

Lines 7 – 10 loops through the result set as many times as there are rows. In other words,

if there were five images for a specific car, there would be five rows of data returned

and the while loop would go around five times.

Line 11 closes the if statement and the line 12 closes the connection to the mySQL

database.

PHP File Uploads

Introduction

In the previous section, we captured images for our cars and then saved them manually onto

the hard drive. That’s cool, but tedious. What would be really cool would be to simply select

a car in our inventory and click a button called “Add Image”, and let the script handle the rest

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

– putting the file in the right place and creating the correct row in the images table using the

VIN of the selected vehicle.

That’s what we’ll do next.

Create an Upload File form

In its most basic incarnation, here is an HTML form you can use to upload a file.

There are a couple of things worth pointing out.

First, notice the form attributes: action=‘upload_file.php’ means that when you click the submit

button, the result of the form post will be passed to the upload_file.php script for further

processing. Next, the enctype=“multipart/form-data” is a new one for us. Here we are specifying

the encoding type to be used by the form. You have to specify that it is multipart/form-data if

you are including a file upload control on a form, so the browser knows to pass the file as a file,

and not as just another big block of text.

We also have a new type of input box. In the past, we’ve been using the input boxes mostly to

allow users to type in text. When you specify that an input type=“file”, the browser handles it

differently. It will put a browse button next to the input field,allowing the user to select a

file from his or her computer.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Create a Script to Process the Uploaded File

The form above specified that the post be processed by ‘upload_file.php’. This script is

used to do something with the file once it’s been uploaded. The script that follows

simply echoes back to the browser some of the attributes of the file that has just been

uploaded. There are, of course, other file attributes that we won’t cover, because you

probably won’t ever need to use them.

It doesn’t really matter how they work, the important thing is that they do work. And, they are

very cool. They open up a whole realm of possibilities for customizing your web application for

a specific customer. For example, in the case of Sam’s Used Cars, you could ask a customer

their preferred car color, make/model, features, etc. From that point on, you can customize the

pages to reflect the customers’ preferences. For example, Hey look, this car has a sunroof! (And

it’s red too!) It’s just a sample app, so it’s OK to code annoying features to learn something

valuable.

I highlighted in yellow the parts that need to match. In other words, if the name of the

input control on the upload form refers to the file as ‘foo’, like <input type=“file”

name=“foo”> you would also have refer to it as foo on the script that follows, such as

$_FILES[“foo”][“name”]. The actual name doesn’t matter, but what does matter is

consistency.

When you upload a file using PHP, the file is stored in a temporary folder. Unless you

specifically do something with the file, it will soon disappear.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

For Sam’s Used Cars, the ideal thing to do would be to upload the file, copy the file into a

specific folder, and then create a record in the images table that inserts the proper vehicle VIN

and the file name of the image we just uploaded. In the sample data, see the script

ViewCarsAddImage.php to see this exact concept in action.

Code: ViewCarsAddImage.php

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using

PHP & MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using

PHP & MySQL

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Code Explained

Line 1 opens the php tag, and line 2 adds the necessary include file to connect to our

database.

Line 3 creates a variable called $vin and assigns it the value that was passed to it using when

a form was posted. Again, see this in action with the sample scripts included with this book.

This is not the only way we could have done this. We could also have passed the VIN in a

query string, the technique we used in viewcar.php

Lines 4 – 7 test to see if a file was, in fact, uploaded. If not, an error is printed using

line 6.

Beginning with Line 9, the script begins to process the uploaded file.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Lines 10 – 12 print information about the file, and line 13 prints the VIN, just to make

sure we got it without any problems.

Line 14 tells us the name that PHP used to temporarily store the uploaded file.

TIP: Notice that on the end of the line I also have it write “\n”, which means to add a new line at

the end of this. This doesn’t affect the script at all, but it does put a new line on the HTML that

is created by the script. Putting \n at the end of the line on scripts makes the HTML code easier

to read when you look at a page and select View Source— something that every PHP developer

has to do from time to time.

Line 14 tells us the name that PHP used to temporarily store the uploaded file.

TIP: Notice that on the end of the line I also have it write “\n”, which means to add a new line at

the end of this. This doesn’t affect the script at all, but it does put a new line on the HTML that

is created by the script. Putting \n at the end of the line on scripts makes the HTML code easier

to read when you look at a page and select View Source— something that every PHP developer

has to do from time to time.

Line 15 uses the command getcwd() to figure out the name of the folder in which the

current script is running. Why did I want that? Because I want to put the uploaded file

into a folder that is under the current folder, and to do that you need to know where you

are. Line 16 outputs what it just learned.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

In line 17, we create a variable called $target_path and assign it a value by adding two

strings together using the . character. The two strings we added are the current directory

and /uploads/. We are creating the target path to specify where we want the uploaded

file to be put— in the uploads folder.

Line 18 outputs the result of the calculation to set the target path.

In line 20 we tweak the target path yet again, this time appending the original file name

of the uploaded file to it.

Line 21 calculates the name of just the image file without the entire file path. This is because

when you are working with HTML tags, you don’t have to specify the entire path of the

image; you only need to specify where it is relative to where you are.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Lines 22 and 24 output the values of these calculations so you can see what was the

result. Of course, if this was a “real” web site for a used car lot, you wouldn’t want all

this extra information going to the browser.

Lines 26 moves the uploaded file from the temporary location assigned by PHP into the

target path that you calculated in line 20. Line 27 informs you of this fact.

Next, we want to create a record in the images table that points to this new image file.

Lines 29 to 35 set the stage for this to happen.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

In line 36 we get just the name of the uploaded file, without any path information at all. This is

because we just want to insert the name of the file into the database. When referring to the file

later with an tag, we can always specify a path if needed.

Line 37 builds the query to insert the record into the database, and line 38 writes out what

the query is. Line 38 was very helpful while I was originally writing this script, because of

course it didn’t work the first time I tried it. Seeing the actual query is the first step to

figuring out why a particular query did not work.

Lines 39 to 41 create a link that allows us to easily add another image for this car if we

have one.

Lines 42 to 51 execute the query and prints out either a success or failure message. Line

52 closes the connection to mySQL.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

Line 52 creates an image tag for the file we just uploaded so you can see what it looks

like. When I first created this the images were so big they took over the whole screen,

so I added the attribute width=‘150’ to keep the images to a reasonable size. This tells

the browser to resize the image.

PHP Quirks and Tips

Introduction

Every language has its quirks. As I encounter those aspects of PHP that are not

immediately intuitive, or if I find a great tip that could make your life easier, it will

go into this section.

Single Quotes vs Double Quotes

When working with strings, it is important to understand the difference in how PHP

treats single quotes (echo ‘Hello $name’;) as compared with double quotes (echo

“Hello $name”;)

Single quoted strings will display things exactly “as is.” Variables will not be

substituted for their values. The first example above (echo ‘Hello $name’;) will

print out Hello $name.

Double quote strings will display a host of escaped characters and variables in the

strings will be substituted for their values. The second example above (echo “Hello

$name”) will print out Hello Alan if the $name variable contains ‘Alan’.

This is an easy thing to mix up, so read it again. :)

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

The Equal Sign

The equal sign can often be a source of confusion. A single equal sign is used to assign

a value to a variable, for instance $FirstName = ‘Alan’;

The equal sign can also be used to compare to values, if you put two of them together

and include it in an if statement. For instance, $FirstName == ‘Alan’ will return true for

me, as the following code demonstrates

See the sample code comparisons.php

The quirky thing about the double equal test is that PHP will attempt to convert the two variables

being compared into different types to see if it gets a match. For instance, if $a

= 1 and $b = “1” you might think that they are not equal because they are different
types. (One is a number and the other is a string.)

However, comparing $a and $b using the == comparison will return true, because if you convert

$b from the type string to the type number the two variables are equal.

http://www.joyofphp.com/sample-code-to-illustrate-comparison-operators

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP &

MySQL

If you want to test if two values are the same value and the same type, you compare them

using three equal signs. This way, $a === $b would return false.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Comparison Operators

If you compare a number with a string or if the comparison involves numerical strings,

then each string is converted to a number and the comparison performed numerically.

These rules also apply to the switch statement. The type conversion does not take place

when the comparison is === or !== as this involves comparing the type as well as the

value.

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Security Considerations

Introduction

As we have seen, PHP is a very easy language to learn, and many people without any

sort of formal background in programming will learn it as a way to add inter-activity

to their web sites.

Unfortunately, that often means PHP programmers, especially those newer to web

development, are unaware of the potential security risks their web applications can

contain.

Security is something that is often overlooked when designing a web project, because

there isn’t really any “joy” in thinking about someone hacking into your shiny new

application.

Security is a difficult thing to measure, and it is impossible to say whether an application is

truly secure or not—there are only degrees of security. Naturally, the more effort you put

into making an application secure, the more secure it will be. The trick, of course, is finding

the right balance in time and effort—and expense.

It is fairly easy and relatively inexpensive to provide a sufficient level of security for

most applications. However, if your security needs are very demanding—because the

information stored in your application is very valuable (or very sensitive, like nuclear

launch codes)—then you must ensure a higher level of security despite the increased

costs that will be associated with it. Remember, a security breach can also be very

expensive.

Balancing Security and Usability

Sadly, many of the steps taken to increase the security of a web application also decrease its

usability. Passwords, session time-outs, and access control levels and roles all create

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

obstacles for legitimate users. While these steps will increase the security of the application,

you can’t have it so secure that nobody can use it.

I did a year-plus contract as a developer at an unnamed government agency that claimed to be very

security conscious. They required a thorough background check prior to employment, and

everyone had to wear high-tech badges to move about the building. We even had guards at the

entrance to the building. It was “so secure” that we had to change our passwords every 30 days to

a password we hadn’t used before, and that password had to be at least 10 characters long and

contain numbers, letters, mixed case, and punctuation marks—and it couldn’t be found in the

dictionary.

In short, they required passwords that no human could actually remember, and the system was not

very usable. If your computer was idle for 15 minutes or more, you’d be prompted to type in the

password in again. Everyone I worked with on that project had their password written down on a

piece of paper right next to their computer. Clearly the “powers that be” in the security department

had picked security over usability to such an extreme that the very security they were seeking was

utterly compromised.

SQL Injection

One of PHP’s greatest strengths is the ease with which it can communicate with

databases, such as MySQL. The Sam’s Used Car Lot example from this book and

thousands of other high profile web sites, such as http://Facebook.com, rely on

databases to function.

With that strength also comes risks. The most common security hazard faced when

interacting with a database is something called SQL Injection - when a user deliberately

uses part of your application to run unauthorized and unintended SQL queries on your

database.

Let’s use a common example. Although we didn’t cover it in this book, many systems that ask

a user to login feature a line of PHP code that looks a lot like this one:

The script takes the username and password that was entered on the form and builds

a query using the text entered by the user.

Does it look familiar? You’ll see many variations of this as your journey into the Joy of

PHP continues. So what’s the problem? It does not look like such code could do much

damage. But let’s say for a moment that I enter the following into the “username” input

box in the form and submit it:

http://facebook.com/

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

‘OR1=1#

The hash symbol (#) tells MySQL that everything following it is a comment and to ignore it.

The query that is going to be executed by mySQL will now look like this:

The # symbol tells mySQL to ignore any text that follows, leaving a WHERE statement of

‘WHERE Username = ” OR 1=1’. Since 1 always equals 1, the WHERE clause of the SQL will

match for every row—and here’s the bad part. The query will return all of the usernames and

passwords from the database. What may happen next is that if the first username and password

combination is the admin user, then the person who simply entered a few symbols into a username

box is now logged in as your website administrator, as if they actually knew the admin’s username

and password, which they

probably don’t, and shouldn’t know.

With a little creativity which is beyond the scope of this book, SQL Injection can be

used to accomplish some nasty tricks you probably never thought of when designing

your application.

Fortunately, it is pretty easy to put up roadblocks that help prevent this type of

vulnerability. By checking for apostrophes in the items we enter into the database, and

removing or substituting them, we can prevent anyone from running their own SQL

code on our database.

The function below would do the trick:

Next we would need to modify our query. Instead of directly using the _POST

variables, we would pass all user-provided data through the make_safe function, such

as:

Class: - B.Com, B.Com (Hons), BBA & BAJMC II Year Subject: Web Development Using PHP & MySQL

Now, if a user entered the malicious data above, the query will look like the following,

which is perfectly harmless. The following query will select from a database where the

username is equal to “' OR 1=1 #”.

Now, unless you happen to have a user with a very unusual username and a blank

password, your attacker will not be able to do any damage.

It is important to check all the data passed to your database like this, however secure

you may think it is.
